Effect of elastic-plastic rotational spring joint on postbuckling behaviour of variable-are-length elastica
โดย ณัฐพัชร์ จันทรกุลมณี
ปี 2562
บทคัดย่อ
วิทยานิพนธ์นี้ศึกษาพฤติกรรมหลังการโก่งเดาะของอิลาสติกคาที่มีความยาวส่วนโค้งแปรเปลี่ยนได้ที่เชื่อมต่อกันด้วยสปริงต้านทานการหมุน โดยแบบจำลองของสปริงต้านทานการหมุนมีทั้งหมดสามรูปแบบคือยืดหยุ่นเชิงเส้น ยืดหยุ่นเชิงเส้นคู่ และอิลาสติก-พลาสติก ปลายด้านหนึ่งของ อิลาสติกคายึดติดกับจุดรองรับแบบหมุนได้อย่างอิสระ ปลายอีกด้านวางอยู่บนจุดรองรับแบบสลีฟ สปริงต้านทานการหมุนวางห่างจากจุดรองรับแบบหมุนได้อย่างอิสระตามระยะที่กาหนด แรงอัดกระทาที่ปลายด้านจุดรองรับแบบสลีฟเพื่อดันความยาวส่วนโค้งของอิลาสติกคาเข้าไปในระบบจนกระทั่งสามารถสังเกตพฤติกรรมหลังการโก่งเดาะได้
การศึกษาในครั้งนี้ ทำการวิเคราะห์พฤติกรรมหลังการโก่งเดาะของอิลาสติกคาที่ตำแหน่งของจุดต้านทานการหมุนของสปริงแทนด้วยสัญลักษณ์ทั้ง 3 กรณี คือ [alpha]=0.25, [alpha]=0.50 และ [alpha] =0.75 โดยกำหนดสติฟเนสเริ่มต้นของสปริงต้านทานการหมุน K [Bar][subscript1] =10 และ 100 และแปรผันสติฟเนสของสปริงภายหลังการคราก ชุดของสมการอนุพันธ์ครอบคลุมปัญหาสามารถหาได้จากสมการสมดุล ความสัมพันธ์ระหว่างโมเมนต์และความโค้ง และความสัมพันธ์เชิงเรขาคณิต เนื่องจากปัญหานี้เป็นปัญหาแบบขอบเขตสองจุดจึงใช้วิธียิงเป้าในการศึกษานี้ โดยอาศัยการอินทิเกรตเชิงตัวเลขแบบรุงเง-คุตตากับระบบสมการครอบคลุมปัญหาร่วมกับกระบวนการกระทำซ้ำแบบนิวตัน-ราฟสัน จนกระทั่งสอดคล้องกับเงื่อนไขขอบเขต
จากผลการคำนวณพบว่าภายหลังการโก่งเดาะอิลาสติกคาอยู่ในสภาวะไร้เสถียรภาพ และเมื่อสปริงต้านทานการหมุนเกิดการครากแรงอัดอาจลดลงอย่างทันทีซึ่งขึ้นอยู่กับอัตราส่วนของสติฟเนส r = K[Bar][subscript2] / K [Bar][subscript1] และอิลาสติกคาสามารถเปลี่ยนกลับมาอยู่ในสภาวะที่มีเสถียรภาพได้ในช่วงใดช่วงหนึ่งของความยาวส่วนโค้งทั้งหมด นอกจากนั้นในปัญหานี้สปริงต้านทานการหมุนสามารถเกิดการหมุนกลับด้านได้ โดยเมื่อเกิดการหมุนกลับด้านของสปริงเป็นแบบอิลาสติก-พลาสติก จะให้ค่าน้ำหนักบรรทุกที่มากกว่าในกรณีที่สปริงเป็นแบบยืดหยุ่นเชิงเส้นคู่ เนื่องจากสติฟเนสของสปริงที่เพิ่มขึ้น
ABSTRACT
This thesis investigated the postbuckling behavior of the variable-arc-length elastica (VAL elastica) connected with a rotational spring joint. All three models of the spring joints included linear elastic, bilinear elastic, and elastic-plastic. One end of the elastica was attached at the hinged joint; meanwhile, the remote end was placed on the sleeve support. The rotational spring joints were independently located at the determined distances apart from the hinged joint. The compression force exerted at the sleeve support to push the arc-length of the elastica into the system so that the postbuckling behavior could be observed.
In this study, the postbuckling behavior of the VAL elastica was studied symbolically for the three cases of the spring joint positions. They were [alpha]=0.25, [alpha]=0.50 and [alpha] =0.75. At each position of [alpha] , the initial value of the stiffness of the spring joints ( K [Bar][subscript1] =10 and 100) was assigned; and the stiffness of the spring joints were varied after yielding. The set of governing differential equations could be obtained from equilibrium equations, moment-curvature relations, and geometric relations. Since this problem was a two-point boundary value, the shooting method was employed in this study. The numerical integration of the Runge-Kutta method and the equation system method, which covered this problem, in cooperation with the repetitive process of the Newton-Raphson method, were performed until the boundary conditions were satisfied.
From the computational results, it was found that the elastica became unstable after buckling. After yielding of the spring joints, the compression might rapidly drop depending on the ratio of the stiffness ( r = K [Bar][subscript2] / K [Bar][subscript1] ). The elastica could turn into a stable equilibrium for the interval of total arc-length. In addition to this problem, the rotation of the spring joint could be reversed. When the elastic-plastic spring joint was reversed, its load parameter was greater than that of the bilinear elastic spring joint due to the increase of the stiffness.